On locally conformal Kähler space forms

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Locally Conformal Kahler Space Forms

An m-dimensional locally conformal Khler manifold (l.c.K-manifold) is characterized as a Hermitian manifold admitting a global closed 1-form a%(called the Lee form) whose structure (F%,g%) satisfies VF -8g + 8g F + aF, where ? denotes the covariant differentiation with respect to the Hermitian metric gl, 8 -Fl a, Fl F gel and the indices 9, ,l run over the range 1,2, m. For l.c.K-manifolds, I.V...

متن کامل

Locally conformal Kähler manifolds with potential

A locally conformally Kähler (LCK) manifold M is one which is covered by a Kähler manifold M̃ with the deck transform group acting conformally on M̃ . If M admits a holomorphic flow, acting on M̃ conformally, it is called a Vaisman manifold. Neither the class of LCK manifolds nor that of Vaisman manifolds is stable under small deformations. We define a new class of LCK-manifolds, called LCK manifo...

متن کامل

Locally conformal symplectic nilmanifolds with no locally conformal Kähler metrics

We report on a question, posed by L. Ornea and M. Verbitsky in [32], about examples of compact locally conformal symplectic manifolds without locally conformal Kähler metrics. We construct such an example on a compact 4-dimensional nilmanifold, not the product of a compact 3-manifold and a circle.

متن کامل

Locally conformally Kähler manifolds with potential

A locally conformally Kähler (LCK) manifold M is one which is covered by a Kähler manifold M̃ with the deck transform group acting conformally on M̃ . If M admits a holomorphic flow, acting on M̃ conformally, it is called a Vaisman manifold. Neither the class of LCK manifolds nor that of Vaisman manifolds is stable under small deformations. We define a new class of LCK-manifolds, called LCK manifo...

متن کامل

On Conformal Dilatation in Space

We study the conformality problems associated with quasiregular mappings in space. Our approach is based on the concept of the infinitesimal space and some new Grötzsch-Teichmüller type modulus estimates that are expressed in terms of the mean value of the dilatation coefficients.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Mathematics and Mathematical Sciences

سال: 1985

ISSN: 0161-1712,1687-0425

DOI: 10.1155/s0161171285000060